Running code on the massive parallelism of the Intel® Xeon Phi™ family of co-processors is easy, so you can quickly focus on optimization and achieving high performance. Fine-tuning for parallelism takes your applications from correct to correct and efficient.

The latest book compiled by parallel programming evangelists and expert Intel engineers James Reinders and Jim Jeffers provides a wealth of actual examples from contributors who have found inventive ways to get the most from Intel® multicore and many-core processors.
What’s Inside

High Performance Parallelism Pearls shows you:

> The most effective ways to tap the computational potential of systems with Intel Xeon Phi coprocessors and Intel® Xeon™ processors or other multicore processors
> Examples of successful programming efforts drawn from across industries and domains such as chemistry, engineering, and environmental science
> Dozens of success stories that demonstrate not just the features of these powerful systems but also how to take best advantage of parallelism across these heterogeneous systems

In each chapter, you'll find detailed technical information you can use, including:

> Proven results from 69 technical experts across multiple vertical domains
> Practical techniques and explanations for optimizations that help processors and coprocessors
> Actual source code, with highlights published in the book and complete source code available for download

Get Your Copy Today

High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches (ISBN 978-0128021187) is available from the Elsevier Store and Amazon. Published by Morgan Kaufmann

Find out more, read reviews, and read the unabridged first chapter – lotsofcores.com

“The newest book by James Reinders and Jim Jeffers, High Performance Parallelism Pearls, distills the experience of 69 HPC experts into 28 chapters designed to teach the world about the performance capabilities of the massively parallel Intel® Xeon Phi™ family of products.”

– Rob Farber, Teaching the World About Intel Xeon Phi, TechEnablement, September 30, 2014